Acquaintance content and obviation

- (1) KERNELS
 - a. A kernel K is a set of propositions that encode direct knowledge
 - b. *K* directly settles (whether) *p* iff $\exists q \in K [q \subseteq p \lor q \subseteq \neg p]$
 - c. The proposition $\bigcap K$ is a vanilla epistemic modal base: the set of worlds compatible with what is known directly and indirectly
- (2) Must
 - a. $\llbracket must \ p \rrbracket^{c,i}$ is defined only if K does not directly settle $\lambda i. \llbracket p \rrbracket^{c,i}$
 - b. If defined, $[\![must\ p\]\!]^{c,i} = 1$ iff $\bigcap K \subseteq \lambda i . [\![p\]\!]^{c,i}$
- (3) a. $[tasty]^{c,\langle w,j,K_{j,w}\rangle} = \lambda o: K_{j,w}$ directly settles whether o is tasty for j in w. 1 iff o is tasty for j in w.
 - b. $K_{j,w}$ directly settles whether p iff $\exists q \in K_{j,w} \ [\ q \subseteq p \lor q \subseteq \neg p]$

Applied to a sentence with a PPT (4a), such semantics yields (4b):

- (4) a. This puerh is delicious.
 - b. [The puerh is delicious] $^{c,\langle w,j,K_{j,w}\rangle}$ = $\lambda o: K_{j,w}$ directly settles whether puerh is delicious for j in w. 1 iff puerh is delicious for j in w
- $(5) \quad \text{a.} \quad \llbracket \text{ must } p \ \rrbracket^{\langle \dots, K_{sp,w}, \dots \rangle, \langle w, j, \mathbf{K_{j,w}} \rangle} \ = \llbracket \text{ must } \rrbracket^{\langle \dots, K_{sp,w}, \dots \rangle, \langle w, j, K_{j,w} \rangle} (\llbracket p \ \rrbracket^{c, \langle w, j, \{ \bigcap \mathbf{K_{j,w}} \} \rangle})$
 - b. Given the semantics for PPTs: $[\![must [PPT]]\!]^{\langle \dots, K_{sp,w}, \dots \rangle, \langle w, j, K_{j,w} \rangle}$ is defined iff $\{ \bigcap K_{j,w} \}$ directly settles whether p
 - c. vF&G's semantics for *must*: $[\![\!] \text{must}]\!]^{\langle \dots, K_{Sp,w}, \dots \rangle, \langle w, j, K_{j,w} \rangle}$ $= \lambda p : K_{Sp,w}$ does not directly settle whether p. 1 iff $\bigcap K_{Sp,w} \subseteq p$

The full derivation is given in (6) (we do not take tense into account):

- (6) a. The puerh must be delicious.
 - b. [must [the puerh is delicious]] $\langle ...,K_{sp,w},...\rangle,\langle w,j,K_{j,w}\rangle$ = [must] $\langle ...,K_{sp,w},...\rangle,\langle w,j,K_{j,w}\rangle$ ([the puerh is delicious] $c,\langle w,j,\{\cap K_{j,w}\}\rangle$) = $\bigcap K_{sp,w} \subseteq (puerh.delicious)$, if defined; and defined iff $\{\bigcap K_{j,w}\}$ directly settles whether puerh is delicious to j in w and

 $K_{sp,w}$ does not directly settle whether puerh is delicious to j in w.

We extend our analysis of 'bare' uses to overt tasters DPs and propose that overt judges depend

on the DP's kernel (7):

(7) \llbracket delicious to $\alpha \rrbracket^{c,i} = \lambda o$: the kernel of $\llbracket \alpha \rrbracket^{c,i}$ in w at t directly settles whether o is delicious for α in w. 1 iff o is tasty for α in w

For non-obviated cases, the semantics (8) is the same as with 'bare' uses in (4) (modulo the judge) and the AI arises because of the direct settlement requirement:

- (8) a. The puerh is delicious to me.
 - b. $[\![$ the puerh is delicious to me $[\!]^{c,\langle w,j,K_{j,w}\rangle}$ is defined iff $K_{spkr(c),w}$ directly settles whether puerh is delicious for speaker(c) in w. If defined, 1 iff puerh is delicious for speaker(c) in w.
- (9) a. # The puerh must be delicious to me.
 - b. [must [the puerh is delicious to me]] $(\dots, K_{sp,w}, \dots), \langle w, j, K_{spkr(c),w} \rangle$ = [must] $(\dots, K_{sp,w}, \dots), \langle w, j, K_{j,w} \rangle$ ([the puerh is delicious to me] $(\dots, K_{j,w}, \dots), \langle w, j, K_{j,w} \rangle$ = 1 iff $(\dots, K_{spkr(c),w} \subseteq (puerh.delicious), if defined; and defined iff <math>(\dots, K_{spkr(c),w} \cap K_{sp$

Our analysis correctly predicts that modification with obviators will be possible with third-party overt tasters (10a). In such cases, *must* is anchored to the speaker while the PPT is dependent on the DP's kernel, therefore no contradictions ensue (10b).

- (10) a. ✓The puerh must be delicious to Mo.
 - b. $[\![\!]$ must [the puerh is delicious to Mo] $[\![\!]^{\langle \dots,K_{sp,w},\dots\rangle,\langle w,j,K_{j,w}\rangle}$ $= [\![\!]$ must $[\![\!]^{\langle \dots,K_{sp,w},\dots\rangle,\langle w,j,K_{j,w}\rangle}([\![\!]]$ the puerh is delicious to Mo $[\![\!]]^{c,\langle w,j,\{\cap K_{j,w}\}\rangle})$ = 1 iff $[\![\!] \cap K_{spkr(c),w} \subseteq (puerh.delicious)$, if defined; and defined iff $K_{Mo,w}$ directly settles whether puerh is delicious to Mo in w and $K_{spkr(c),w}$ does not directly settle whether puerh is delicious to Mo in w.