
Nominal quantification and evaluation
Standardly, natural language determiners like e.g. no, most, at least five are analysed
as denoting functions from sets to functions from sets to truth-values (or equivalently, as
relations between two sets). For example, the quantifying expression exactly three denotes
the function which when applied to a set A results in a function which when applied to a
set B is true iff there are exactly three entities in the intersection between A and B (see
Peters and Westerståhl (2006) for a comprehensive exposition of generalized quantifier
theory). Interestingly, no natural language determiner has been found, whose denotation
DET is such that the truth of DET(A)(B) depends on the set of Bs which are not As.
Put differently, it appears that DET(A)(B) holds if and only if DET(A)(A∩B) holds,
i.e. the truth depends only on the sets A and A ∩ B, but not on the set B–A. Keenan
and Stavi (1986) refer to this property as conservativity and hypothesise that all natural
language determiners have it. But why are natural language determiners subject to this
restriction? Why does no language have e.g. a determiner exactly rouf, such that Exactly
rouf children cry. is true if and only if the number of crying individuals which are not
children is exactly four?

Intuitively, the reason why the truth of DET(A)(B) never depends on the set of Bs
which are not As is that the restrictor set does exactly what the name says, namely
restrict the domain of quantification. If the domain of quantification is restricted to the
elements of the set A, then the elements which are in B but not in A cannot play a role for
the truth of DET(A)(B). But how can this domain-restricting function of the restrictor
set be analysed? Kamp and Reyle (1993, 317) point out that conservativity follows in
DRT under their assumption that the assignments verifying the scope DRS are extensions
of the assignments verifying the restrictor DRS. But, arguably, this analysis is not fully
satisfactory, because it answers our question only at the cost of raising another related
question. Why is it that the assignments verifying the scope DRS are extensions of the
assignments verifying the restrictor DRS, and not the other way around?

In this talk I argue that the reason why the truth of DET(A)(B) never depends on
the set of Bs which are not in A is that determiner denotations do not make reference to
a scope set B in the first place. So the basic idea is to explain the lack of determiners like
exactly rouf by restricting the type of determiner denotations, so that denotations like
that of exactly rouf are excluded. I reject the analysis of determiners as functions from
a restrictor set into functions from a scope set into truth-values, and propose instead that
they are functions from a restrictor set R into triples of the form 〈X,C,R〉, where X is a
subset of R and C stands for a condition on X (and possibly R). To give some examples:
‖no‖ =def λR.〈X,X ⊆ R ∧X = ∅, R〉
‖most‖ =def λR.〈X,X ⊆ R ∧ |X| > |R−X|, R〉
‖at least three‖ =def λR.〈X,X ⊆ R ∧ |X| ≥ 3, R〉
The immediate consequence of restricting the denotation type of determiners to triples
whose condition involves a subset of the restriction set (and possibly the restriction set)
is that we exclude all denotations which make reference to a scope set, as well as all
denotation types which make reference to the size of the domain. Since the condition in
the denotation of exactly rouf must make reference to the scope set, this denotation is
excluded by the present analysis from being a possible determiner denotation.

Assuming that the denotation of verbs are curried functions which may take triples
like e.g. 〈X,X ⊆ ST ∧ X = ∅, ST 〉 as their arguments, the semantic composition of
‖no student‖ and ‖arrived‖ results in arrive(〈X,X ⊆ ST ∧ X = ∅, ST 〉). By definition
of the first evaluation rule, such a formula is true if (i) there is a set X such that (ii) the



conditions X ⊆ ST ∧X = ∅ hold, and (iii) for every individual in the restrictor set ST it
holds that x is in X if and only if arrive(x). Since the set X is empty, and since among
the students all and only the elements in X have the property of arriving, it follows that
no student arrived. Note that in the present analysis the restrictor plays a dual function:
first it provides the set from which a subset is chosen, and secondly it restricts the domain
for the universal quantification in clause (iii).

More generally, a formula of the form P (T1, T2, . . . , 〈X,C(X,R), R〉, . . . , Tn), where P
is an n-place predicate, Ti are metavariables for terms (triples, atomic or non-atomic vari-
ables, individual constants), and C(X,R) stands for a formula involving the set variable
X (and the restrictor set R), is underspecified in various ways and can therefore be eval-
uated in different ways. If the NP denotations are evaluated sequentially (in an arbitrary
order) this formula is true if ∃X.C(X,R) ∧ ∀x ∈ R.[x ∈ X ↔ P (T1, T2, . . . , x, . . . , Tn)].
So different quantifier scope relations are analysed by different orders in which the triples
are evaluated. For example, after semantic composition of the two NP denotations with
the verb denotation in the sentence Two boys saw five films., the result is the formula
see(〈X,X ⊆ BOY ∧ |X| = 2, BOY 〉, 〈Y, Y ⊆ FILM ∧ |Y | = 5, F ILM〉). If we evaluate
the first triple first, then the result is ∃X.X ⊆ BOY ∧ |X| = 2 ∧ ∀x ∈ BOY.[x ∈ X ↔
see(x, 〈Y, Y ⊆ FILM∧|Y | = 5, F ILM〉)]. Evaluating next the second triple, this formula
is true if ∃X.X ⊆ BOY ∧|X| = 2∧∀x ∈ BOY.[x ∈ X ↔ ∃Y.Y ⊆ FILM ∧|Y | = 5∧∀y ∈
FILM.[y ∈ Y ↔ see(x, y)]], i.e. if there are exactly two boys such that each of them saw
exactly five films. On the other hand, if the triples were evaluated in the opposite order,
the resulting truth-condition would be ∃Y.Y ⊆ FILM ∧ |Y | = 5∧∀y ∈ FILM.[y ∈ Y ↔
∃X.X ⊆ BOY ∧ |X| = 2 ∧ ∀x ∈ BOY.[x ∈ X ↔ see(x, y)]], i.e. there were exactly five
films which were each seen by exactly two boys. Alternatively, by application of the cum-
mulative rule the triples in the formula above can also be evaluated simultaneously. By def-
inition of this rule, the formula is true if ∃X.∃Y.X ⊆ BOY ∧|X| = 2∧Y ⊆ FILM∧|Y | =
5 ∧ ∀x ∈ BOY.[x ∈ X ↔ ∃y ∈ Y.see(x, y)] ∧ ∀y ∈ FILM.[y ∈ Y ↔ ∃x ∈ X.see(x, y)].

A formula containing triples as terms can be evaluated in a number of different ways.
First, the formula can be evaluated sequentially or simultaneously, to allow for quantifier
scope differences as well as for cummulative readings. And secondly, each evaluation step
can be either distributive (cf. universal quantification over the individuals of the restrictor
set) or collective (universal quantificaton over collections of individuals in restrictor set).

In summary, if the type of determiner denotations is narrowed down to functions
from restrictor sets R to triples 〈X,C(X,R), R〉 then we predict the lack of determiner
denotations DET where DET(A)(B) depends on the set B–A (or the size of the domain).
A relation R between such triples can be evaluated in different ways, accounting not only
for scope differences, but also for cummulative, distributive and collective readings. The
evaluation rules directly implement the idea that the restrictor set restricts the domain of
quantification by (i) universally quantifying only over the elements of the restrictor set,
and (ii) by requiring that among the individuals in the restrictor set all and only those
which are in the subset X stand in the R relation to other individuals.
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